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Motivation

3

 Machine Learning is EVERYWHERE!!

[ Weller 2017 ]

https://arxiv.org/abs/1708.01870


Motivation

Model understanding is absolutely critical in several domains -- 
particularly those involving high stakes decisions! 

4



Motivation: Why Model Understanding?
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Predictive
Model

Input

Prediction = Siberian Husky

Model Understanding

This model is 
relying on incorrect 

features to make 
this prediction!! Let 

me fix the model

Model understanding facilitates debugging.



Motivation: Why Model Understanding?
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Predictive 
Model

Defendant Details

Prediction = Risky to Release

Model Understanding

Race

Crimes

Gender

This prediction is 
biased. Race and 
gender are being 
used to make the 

prediction!!

Model understanding facilitates bias detection.

[ Larson et. al.  2016 ]



Motivation: Why Model Understanding?
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Predictive 
Model

Loan Applicant Details

Prediction = Denied Loan

Model Understanding

Increase salary by 
50K + pay credit 
card bills on time 
for next 3 months 
to get a loan

Loan Applicant

I have some means 
for recourse. Let me 
go and work on my 
promotion and pay 

my bills on time.
Model understanding helps provide recourse to individuals 

who are adversely affected by model predictions. 



Motivation: Why Model Understanding?
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Predictive 
Model

Patient Data Model Understanding This model is using 
irrelevant features when 

predicting on female 
subpopulation. I should 
not trust its predictions 

for that group.

Predictions

25, Female, Cold
32, Male, No
31, Male, Cough
.
.
.
.

Healthy
Sick
Sick
.
.
Healthy
Healthy
Sick 

If gender = female, 
   if ID_num > 200, then sick

If gender = male,
   if cold = true and cough = true, then sick Model understanding helps assess if and when to trust 

model predictions when making decisions. 



Motivation: Why Model Understanding?
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Predictive 
Model

Patient Data Model Understanding
This model is using 

irrelevant features when 
predicting on female 
subpopulation. This 
cannot be approved!

Predictions

25, Female, Cold
32, Male, No
31, Male, Cough
.
.
.
.

Healthy
Sick
Sick
.
.
Healthy
Healthy
Sick 

If gender = female, 
   if ID_num > 200, then sick

If gender = male,
   if cold = true and cough = true, then sick Model understanding allows us to vet models to determine 

if they are suitable for deployment in real world.  



Motivation: Why Model Understanding? 

10

Debugging

Bias Detection

Recourse

If and when to trust model predictions

Vet models to assess suitability for 
deployment

Utility

End users (e.g., loan applicants)

Decision makers (e.g., doctors, judges)

Regulatory agencies (e.g., FDA, European 
commission)

Researchers and engineers

Stakeholders



Achieving Model Understanding

Take 1: Build inherently interpretable predictive models
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[ Letham and Rudin 2015; Lakkaraju et. al. 2016 ]

https://dl.acm.org/doi/10.1145/2939672.2939874


Achieving Model Understanding

Take 2: Explain pre-built models in a post-hoc manner

12

Explainer

[ Ribeiro et. al. 2016, Ribeiro et al. 2018; Lakkaraju et. al. 2019 ]

https://arxiv.org/abs/1602.04938
https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
https://dl.acm.org/doi/10.1145/3306618.3314229


Inherently Interpretable Models vs. 
Post hoc Explanations

In certain settings, accuracy-interpretability trade offs may exist.  
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Example

[ Cireşan et. al. 2012, Caruana et. al. 2006, Frosst et. al.  2017, Stewart 2020 ]

https://arxiv.org/search/cs?searchtype=author&query=Cire%C5%9Fan%2C+D


Inherently Interpretable Models vs. 
Post hoc Explanations

14

complex models might                                
achieve higher accuracy

can build interpretable +
      accurate models  



Sometimes, you don’t have enough data to build your model from scratch.

And, all you have is a (proprietary) black box!
 

            

Inherently Interpretable Models vs. 
Post hoc Explanations
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[ Ribeiro et. al. 2016 ]

https://arxiv.org/abs/1606.05386


Inherently Interpretable Models vs. 
Post hoc Explanations

This tutorial will focus on post hoc explanations! 
16

If you can build an interpretable model which is also adequately 
accurate for your setting, DO IT!  

Otherwise, post hoc explanations come to the rescue!

[ Rudin 2019 ]

https://arxiv.org/abs/1811.10154


What is an Explanation?

17



What is an Explanation?

Definition: Interpretable description of the model behavior

18

Classifier User

ExplanationFaithful Understandable



Summarize with a program/rule/tree

Classifier

What is an Explanation?

Definition: Interpretable description of the model behavior

19

UserSend all the model parameters θ?

Send many example predictions?

Select most important features/points

Describe how to flip the model prediction

...

[ Lipton 2016 ]

https://arxiv.org/abs/1606.03490


Local versus Global Explanations

Global explanation may be too complicated



Local versus Global Explanations

Global explanation may be too complicated



Local versus Global Explanations

Global explanation may be too complicated

Definition: Interpretable description of the model behavior
 in a target neighborhood.



Local Explanations

Definition: Interpretable description of the model behavior
 in a target neighborhood.

Summarize with a program/rule/tree

Classifier User
Send many example predictions?

Select most important features/points

Describe how to flip the model prediction

...



Local Explanations vs. Global Explanations

24

Explain individual predictions Explain complete behavior of the model

Help unearth biases in the local 
neighborhood of a given instance

Help shed light on big picture biases 
affecting larger subgroups 

Help vet if individual predictions are 
being made for the right reasons 

Help vet if the model, at a high level, is 
suitable for deployment



Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Explanations in Different Modalities

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

25



Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Explanations in Different Modalities

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
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Approaches for 
Post hoc Explainability

27



Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability

28

Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability

29

Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Being Model-Agnostic…

No access to the internal structure…

X1 > 0.5

X2 > 
0.5f(x)

Data Decision

Practically easy: not tied to PyTorch, Tflow, etc.

Not restricted to specific models

Study models that you don’t have access to!



LIME: Sparse, Linear Explanations

Identify the important dimensions, 
and present their relative importance

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


1. Sample points around x
i

2. Use model to predict labels for each sample

3. Weigh samples according to distance to x
i

4. Learn simple model on weighted samples

5. Use simple model to explain

LIME: Sparse Linear Explanations



Perturbed 
Instances

P(Labrador)

LIME Example - Images

Original Image  

0.92

0.001

0.34

P(labrador)  = 0.21  

Locally weighted
regression

Explanation

[ Ribeiro et al. 2016 ]

LIME is quite customizable: 
● How to perturb?
● Distance/similarity?
● How local you want it to be?
● How to express explanation Maybe to a fault?

https://arxiv.org/abs/1602.04938


Predict Wolf vs Husky

34

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


Predict Wolf vs Husky

We’ve built a great snow detector… 

35

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


SHAP: Shapley Values as Importance

Marginal contribution of each feature towards the prediction,
averaged over all possible permutations.

36

x
i

P(y) = 0.9

x
i

P(y) = 0.8

M(x
i
, O) = 0.1

O

O/x
i

Fairly attributes the prediction to all the features.

[ Lundberg & Lee 2017 ]

https://arxiv.org/abs/1705.07874


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability

37

Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Anchors: Sufficient Conditions

[ Ribeiro et al. 2018 ]

http://sameersingh.org/files/papers/anchors-aaai18.pdf


Salary Prediction
LIME

Anchors

[ Ribeiro et al. 2018 ]

http://sameersingh.org/files/papers/anchors-aaai18.pdf


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability

40

Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Saliency Map Overview

41

Input Model Predictions

Junco Bird



42

What parts of the input are most relevant for the model’s prediction:  ‘Junco Bird’?

Input Model Predictions

Junco Bird

Saliency Map Overview
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What parts of the input are most relevant for the model’s prediction:  ‘Junco Bird’?

Input Model Predictions

Junco Bird

Saliency Map Overview
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What parts of the input are most relevant for the model’s prediction:  ‘Junco Bird’?

Input Model Predictions

Junco Bird

Saliency Map Overview

● Feature Attribution
● ‘Saliency Map’
● Heatmap



A Linear Model Detour

45



A Linear Model Detour: Sensitivity

46

How much does a unit change in an input dimension induce in the output?



A Linear Model Detour: Sensitivity
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How much does a unit change in an input dimension induce in the output?



A Linear Model Detour: Attribution

48

how can we apportion the output across all the input dimensions? 



Another notion of relevance

49

how can we apportion the output across all the input dimensions? 



Modern DNN Setting

50

Model

class specific logit

Input Model Predictions

Junco Bird



Input-Gradient
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Input-Gradient

Logit

Input

Same dimension as 
the input.

Input Model Predictions

Junco Bird

Baehrens et. al. 2010; Simonyan et. al. 2014 .

http://www.jmlr.org/papers/volume11/baehrens10a/baehrens10a.pdf
https://arxiv.org/abs/1312.6034


Input-Gradient
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Input Model Predictions

Junco Bird

Baehrens et. al. 2010; Simonyan et. al. 2014 .

Input-Gradient

Logit

Visualize as a heatmap

Input

http://www.jmlr.org/papers/volume11/baehrens10a/baehrens10a.pdf
https://arxiv.org/abs/1312.6034


Input-Gradient
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Input Model Predictions

Junco Bird

Input-Gradient

Logit

Input

Challenges
● Visually noisy & difficult to 

interpret.
● ‘Gradient saturation.’

Shrikumar et. al. 2017.

Baehrens et. al. 2010; Simonyan et. al. 2014 .

https://arxiv.org/pdf/1704.02685.pdf
http://www.jmlr.org/papers/volume11/baehrens10a/baehrens10a.pdf
https://arxiv.org/abs/1312.6034


SmoothGrad
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Input Model Predictions

Junco Bird

Smilkov et. al. 2017

SmoothGrad

Gaussian noise

Average Input-gradient of 
‘noisy’ inputs.

https://arxiv.org/pdf/1806.03000


SmoothGrad
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Input Model Predictions

Junco Bird

Smilkov et. al. 2017

SmoothGrad

Gaussian noise

Average Input-gradient of 
‘noisy’ inputs.

https://arxiv.org/pdf/1806.03000


Integrated Gradients
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Input Model Predictions

Junco Bird

Baseline input

Path integral: ‘sum’ of interpolated 
gradients

Sundararajan et. al. 2017

https://arxiv.org/abs/1703.01365


Integrated Gradients
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Input Model Predictions

Junco Bird

Path integral: ‘sum’ of interpolated 
gradients

Sundararajan et. al. 2017

Baseline input

https://arxiv.org/abs/1703.01365


Gradient-Input
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Input Model Predictions

Junco Bird

Gradient-Input

Input gradient
Input

Element-wise product of 
input-gradient and input.

Shrikumar et. al. 2017, Ancona et. al. 2018.

https://arxiv.org/abs/1704.02685
https://arxiv.org/pdf/1711.06104


Gradient-Input
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Input Model Predictions

Junco Bird

Gradient-Input

logit gradient
Input

Shrikumar et. al. 2017, Ancona et. al. 2018.

Element-wise product of 
input-gradient and input.

https://arxiv.org/abs/1704.02685
https://arxiv.org/pdf/1711.06104


‘Modified Backprop’ Approaches

60

Compute feature relevance by modifying the 
backpropagation.



‘Modified Backprop’ Approaches
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Compute feature relevance by modifying the 
backpropagation.

Source: Springenberg & Dosovitskiy et. al. 2015

https://arxiv.org/abs/1412.6806


‘Modified Backprop’ Approaches
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Compute feature relevance by modifying the 
backpropagation.

Source: Springenberg & Dosovitskiy et. al. 2015

https://arxiv.org/abs/1412.6806


Attribution: Guided BackProp
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Input Model Predictions

Junco Bird

Guided BackProp



Attribution: Guided BackProp
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Input Model Predictions

Junco Bird

Input GradientGuided BackProp



Layer Relevance Propagation (LRP)

65

Compute feature relevance iteratively and propagate. Different propagation 
rules can be specified.

Output
Input

Source: heatmapping.org; ECML-PKDD 2020 Tutorial.



Layer Relevance Propagation (LRP)

66

Compute feature relevance iteratively and propagate. Different propagation 
rules can be specified.

Output
Input

Source: heatmapping.org; ECML-PKDD 2020 Tutorial.



Layer Relevance Propagation (LRP)
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Input Model Predictions

Junco Bird



Recap
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Input Model Predictions

Junco Bird



Recap
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Input Model Predictions

Junco Bird



Recap
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Input Model Predictions

Junco Bird



Additional Methods 

71

• Class Activation Mapping (Zhou et. al. 2016).
• Meaningful Perturbation (Fong et. al. 2017). 
• RISE  (Petsuik et. al. 2018). 
• Extremal Perturbations (Fong & Patrick 2019).
• DeepLift (Shrikumar et. al. 2018).
• Expected Gradients (Erion et. al. 2019)
• Excitation Backprop (Zhang et. al. 2016)
• GradCAM (Selvaraju et. al. 2016)
• Guided GradCAM (Selvaraju et. al. 2016)
• Occlusion (Zeiler et. al. 2014).
• Prediction Difference Analysis (Gu. et. al. 2019).
• Internal Influence (Leino et. al. 2018).

See for additional methods:  Samek & Montavon et. al. 2020 

https://arxiv.org/pdf/2003.07631.pdf


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Prototype Approaches

73

Explain a model with synthetic or natural input ‘examples’. 



Prototype Approaches
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Explain a model with synthetic or natural input ‘examples’. 

Insights

• What kind of input is the model most likely to 
misclassify?

• Which training samples are mislabelled?

• Which input maximally activates an intermediate 
neuron? 
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Input Model Predictions

Junco Bird

Training Point Ranking via Influence Functions

Which training data points have the most ‘influence’ on the test loss?
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Input Model Predictions

Junco Bird

Which training data points have the most ‘influence’ on the test loss?

Training Point Ranking via Influence Functions
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Training Point Ranking via Influence Functions

Influence Function: classic tool used in robust statistics for assessing 
the effect of a sample on regression parameters (Cook & Weisberg, 1980).

Instead of refitting model for every data point, Cook’s distance provides analytical 
alternative.
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Training Point Ranking via Influence Functions

Koh & Liang 2017

Training sample point

Koh & Liang (2017) extend the ‘Cook’s distance’ insight to modern machine learning setting.

https://arxiv.org/pdf/1703.04730.pdf
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Training Point Ranking via Influence Functions

Koh & Liang 2017

Training sample point

ERM Solution

Koh & Liang (2017) extend the ‘Cook’s distance’ insight to modern machine learning setting.

UpWeighted ERM Solution

https://arxiv.org/pdf/1703.04730.pdf
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Training Point Ranking via Influence Functions

Koh & Liang 2017

Training sample point

ERM Solution

Koh & Liang (2017) extend the ‘Cook’s distance’ insight to modern machine learning setting.

UpWeighted ERM Solution

Influence of Training Point on Parameters

Influence of Training Point on Test-Input’s loss

https://arxiv.org/pdf/1703.04730.pdf
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Training Point Ranking via Influence Functions

Applications:

• compute self-influence to identify mislabelled 
examples;

• diagnose possible domain mismatch;

• craft training-time poisoning examples. 

[ Koh & Liang 2017 ]

https://arxiv.org/pdf/1703.04730.pdf


Training Point Ranking: NLP Application

82

Han et. al. (2020) use influence-based training point ranking to 
study spurious training artifacts in NLP setting.

https://arxiv.org/abs/2005.06676.pdf


83

Challenges and Other Approaches

Influence function Challenges: 
1. scalability: computing hessian-vector products can be tedious in 

practice.

2. non-convexity: possibly loose approximation for deeper networks 
(Basu et. al. 2020).

https://arxiv.org/abs/2006.14651
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Challenges and Other Approaches

Influence function Challenges: 
1. scalability: computing hessian-vector products can be tedious in 

practice.

2. non-convexity: possibly loose approximation for ‘deeper’ networks 
(Basu et. al. 2020).

Alternatives: 

• Representer Points (Yeh et. al. 2018).

• TracIn (Pruthi et. al. appearing at NeuRIPs 2020).

https://arxiv.org/abs/2006.14651
https://arxiv.org/abs/1811.09720
https://arxiv.org/abs/2002.08484


‘Activation Maximization’

85

These approaches identify examples, synthetic or natural, that 
strongly activate a function (neuron) of interest.



‘Activation Maximization’
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These approaches identify examples, synthetic or natural, that 
strongly activate a function (neuron) of interest.

Implementation Flavors:

• Search for natural examples within a specified set 
(training or validation corpus) that strongly activate a 
neuron of interest;

• Synthesize examples, typically via gradient descent, 
that strongly activate a neuron of interest. 



Feature Visualization

87Olah et. al. 2017

https://distill.pub/2017/feature-visualization/


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability

88

Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Counterfactual Explanations

As ML models increasingly deployed to make high-stakes decisions 
(e.g., loan applications), it becomes important to provide recourse 
to affected individuals. 

89

Counterfactual Explanations
What features need to be changed and by 

how much to flip a model’s prediction ?
(i.e., to reverse an unfavorable outcome). 



Predictive 
   Model

Deny Loan 

Loan Application

Counterfactual Explanations

90

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

f(x)

Applicant

Counterfactual Generation 
Algorithm

Recourse



Counterfactual Explanations

• Important to provide “recourse” to affected individuals (GDPR)

• Counterfactual Explanations: 
• What features need to be changed and by how much to flip a model’s 

prediction (i.e., to reverse an unfavorable outcome). 

91



Generating Counterfactual Explanations: 
Intuition

92

Proposed solutions differ on:

1. How to choose among 
candidate counterfactuals?

2. How much access is needed to 
the underlying predictive model?



Take 1: Minimum Distance Counterfactuals
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Distance Metric

Predictive Model Desired Outcome

[ Wachter et. al., 2018 ]

Original Instance

Counterfactual

Choice of distance metric dictates what kinds of counterfactuals are chosen. 

Wachter et. al. use normalized Manhattan distance. 

https://arxiv.org/abs/1711.00399


Take 1: Minimum Distance Counterfactuals
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Wachter et. al. solve a differentiable, unconstrained version of the objective 
using ADAM optimization algorithm with random restarts. 

This method requires access to gradients of the underlying predictive model. 

[ Wachter et. al., 2018 ]

https://arxiv.org/abs/1711.00399


Take 1: Minimum Distance Counterfactuals

95

Not feasible to act upon these features!



Take 2: Feasible and Least Cost Counterfactuals

•     is the set of feasible counterfactuals (input by end user) 
• E.g., changes to race, gender are not feasible 

• Cost is modeled as total log-percentile shift
• Changes become harder when starting off from a higher percentile value

96

[ Ustun et. al., 2019 ]

https://arxiv.org/abs/1809.06514


• Ustun et. al. only consider the case where the model is a linear classifier
• Objective formulated as an IP and optimized using CPLEX

• Requires complete access to the linear classifier i.e., weight vector

97

Take 2: Feasible and Least Cost Counterfactuals

[ Ustun et. al., 2019 ]

https://arxiv.org/abs/1809.06514
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Question: What if we have a black box or a non-linear classifier?

Answer: generate a local linear model approximation (e.g., using LIME) 
and then apply Ustun et. al.’s framework

Take 2: Feasible and Least Cost Counterfactuals

[ Ustun et. al., 2019 ]

https://arxiv.org/abs/1809.06514
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Changing one feature without affecting another might not be possible! 

Take 2: Feasible and Least Cost Counterfactuals

[ Ustun et. al., 2019 ]

https://arxiv.org/abs/1809.06514


After 1 year 

Take 3: Causally Feasible Counterfactuals 

100

Recourse:
Reduce current debt 
from 3250$ to 1000$ 

My current debt has 
reduced to 1000$. 

Please give me loan. 

Loan Applicant                                                               

f(x)

Your age increased by 1 
year and the recourse is 
no longer valid! Sorry!

Important to account for feature interactions when generating counterfactuals!
But how?! 

Loan Applicant                                                               Predictive Model

[ Mahajan et. al., 2019, Karimi et. al. 2020 ]

https://arxiv.org/abs/1912.03277
https://arxiv.org/abs/1905.11190


Take 3: Causally Feasible Counterfactuals 
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Leverage Structural Causal Model (SCM) to 
define this new distance metric

[ Mahajan et. al., 2019 ]

https://arxiv.org/abs/1912.03277


Take 3: Causally Feasible Counterfactuals 

102

Original                             
Instance

x
1

x
2

x
3

x’
1

x’
2

x’
3

Counterfactual

U is set of nodes without parents in the graph;
V is set of nodes with parents in the graph

For variables v with parents, compute L1/L2 distance between value of v for 
original instance and expected value of v given its parents for counterfactual 

Standard L1/L2 distance for 
each variable u with no parents

[ Mahajan et. al., 2019 ]

https://arxiv.org/abs/1912.03277


Take 3: Causally Feasible Counterfactuals 

• Requires knowledge of full causal graph
• Empirically, partial knowledge also seems to work fine 
• Learn about feasibility constraints/partial causal graph from user inputs 

• Solving the objective: Leverage a Variational Autoencoder (VAE)
• requires access to gradients of the underlying predictive model. 

103

[ Mahajan et. al., 2019 ]

https://arxiv.org/abs/1912.03277


Other Takes on Feasible Counterfactuals 

104

• Data Manifold Closeness: Generated counterfactual should be 
“close to” the original data distribution.

• Sparsity: Ideal to change small number of features in the 
counterfactual

[ Verma et. al., 2020, Poyiadzi et. al. 2020 ]

https://arxiv.org/pdf/2010.10596.pdf
https://arxiv.org/abs/1909.09369


Other Takes on Feasible Counterfactuals 

105

• Data Manifold Closeness: Generated counterfactual should be 
“close to” the original data distribution.

• Include term to minimize the distance (e.g., averaged Euclidean distance) 
between counterfactual and all original data instances

• Sparsity: Ideal to change small number of features in the 
counterfactual

• Include term to minimize the total number of features being changed to 
obtain desired outcome (e.g., L0/L1 norm)

[Verma et. al., Poyiadzi et. al. 2020]



Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Global Explanations

● Explain the complete behavior of a given (black box) model 
○ Provide a bird’s eye view of model behavior 

● Help detect big picture model biases persistent across larger subgroups 
of the population
○ Impractical to manually inspect local explanations of several instances to 

ascertain big picture biases! 

● Global explanations are complementary to local explanations 

107



Local vs. Global Explanations
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Explain individual predictions

Help unearth biases in the local 
neighborhood of a given instance

Help vet if individual predictions are being 
made for the right reasons 

Explain complete behavior of the model

Help shed light on big picture biases 
affecting larger subgroups of the population

Help vet if the model, at a high level, is 
suitable for deployment



Local vs. Global Explanations
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Explain individual predictions

Help unearth biases in the local 
neighborhood of a given instance

Help vet if individual predictions are 
being made for the right reasons 

Explain complete behavior of the model

Help shed light on big picture biases 
affecting larger subgroups 

Help vet if the model, at a high level, is 
suitable for deployment



Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Global Explanation as a Collection of Local Explanations

How to generate a global explanation of a (black box) model?

• Generate a local explanation for every instance in the data using 
one of the approaches discussed earlier

• Pick a subset of k local explanations to constitute the global 
explanation

111

What local explanation technique to use? 
How to choose the subset of k local explanations?



Global Explanations from Local Feature Importances: SP-LIME

LIME explains a single prediction
local behavior for a single instance

Can’t examine all explanations
Instead pick k explanations to show to the user

Diverse
Should not be redundant in 

their descriptions

Representative
Should summarize the 

model’s global behavior
Single explanation

SP-LIME uses submodular optimization 
and greedily picks k explanations

83

Model Agnostic

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


Picking k Explanations: Intuition

11
3

Aggregate 
Feature Importances 
across all instances

“Coverage” of 
Features



11
4

84

Rows represent instances

Columns represent features

f2 is an important feature
across several instances

Explanations of these 
instances will be selected 
by submodular optimization
algorithm

Global Explanations from Local Feature Importances: SP-LIME

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


84

[Ribeiro et. al., 2018]

Global Explanations from Local Rule Sets: SP-Anchor

Use the same approach as above with Anchors algorithm (instead of LIME) 
which produces local rule sets as explanations.

Model Agnostic



84

Global Explanations from Local Rule Sets: SP-Anchor

• Use Anchors algorithm discussed earlier to obtain local rule sets 
for every instance in the data 

• Use the same procedure to greedily select a subset of k local rule 
sets to correspond to the global explanation

Model Agnostic

[ Ribeiro et al. 2018 ]

https://homes.cs.washington.edu/~marcotcr/aaai18.pdf


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals
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Representation Based Approaches
• Derive model understanding by analyzing intermediate representations of a DNN. 

• Determine model’s reliance on ‘concepts’ that are semantically meaningful to 
humans.
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Representation Based Approaches
• Derive model understanding by analyzing intermediate representations of a DNN. 

• Determine model’s reliance on ‘concepts’ that are semantically meaningful to 
humans.

Input Model Predictions

Junco Bird

Does the model rely on the ‘green background’?
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Network Dissection

1. Identify a broad set of human-labeled visual concepts.

Bau & Zhou et. al. 2017

http://netdissect.csail.mit.edu/
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Network Dissection

1. Identify a broad set of human-labeled visual concepts.
2. Gather the response of hidden variables (convolutional filters) to known concepts.

Bau & Zhou et. al. 2017

http://netdissect.csail.mit.edu/
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Network Dissection

1. Identify a broad set of human-labeled visual concepts.
2. Gather the response of hidden variables (convolutional filters) to known concepts.
3. Quantify alignment of hidden variable-concept pairs

Bau & Zhou et. al. 2017

http://netdissect.csail.mit.edu/
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Network Dissection

Bau & Zhou et. al. 2017

http://netdissect.csail.mit.edu/
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Compositional Extension

Mu & Andreas at Neurips 2020

Natural Language Inference Vision

https://arxiv.org/abs/2006.14032.pdf
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Quantitative Testing with Concept Activation Vectors (TCAV)

TCAV measures the sensitivity of a model’s prediction to user provided 
concept using the model internal representations.

Kim et. al. 2018

https://arxiv.org/abs/1711.11279.pdf
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Quantitative Testing with Concept Activation Vectors (TCAV)

Insights from Googlenet and Inceptionv3

Images from Kim et. al. 2018

https://arxiv.org/abs/1711.11279.pdf
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Quantitative Testing with Concept Activation Vectors (TCAV)

Insights from Googlenet and Inceptionv3

Additional Variants: 
• Regression problems in medical domain (Graziani et. al. 2019).

• Automatic extraction of visual concepts (Ghorbani et. al. 2019).
Images from Kim et. al. 2018

https://arxiv.org/abs/1904.04520.pdf
https://arxiv.org/abs/1902.03129.pdf
https://arxiv.org/abs/1711.11279.pdf
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Connections to Probing and Representational Similarity

• The line of work presented has connections to the literature on probing in 
NLP.

• See recent tutorial by Belinkov, Gehrmann, & Pavlick at ACL 2020 for 
additional discussion 

https://www.aclweb.org/anthology/2020.acl-tutorials.1
https://slideslive.com/38928626/interpretability-and-analysis-in-neural-nlp
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Connections to Probing and Representational Similarity

• The line of work presented has connections to the literature on probing in 
NLP.

• See recent tutorial by Belinkov, Gehrmann, & Pavlick at ACL 2020 for 
additional discussion 

Representational Similarity

1. How similar are the representations at the lower layers of a model compared 
to its higher layers. 

2. How similar are the representations of one model to another? 

See: Raghu et. al. 2017 & Kornblith et. al. 2019 for techniques that can provide 
insights on the questions above.

https://www.aclweb.org/anthology/2020.acl-tutorials.1
https://slideslive.com/38928626/interpretability-and-analysis-in-neural-nlp
https://arxiv.org/abs/1706.05806.pdf
https://arxiv.org/abs/1905.00414.pdf


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Model Distillation for Generating Global Explanations

131

Model 
Predictions

Predictive 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer
Simpler, interpretable model 
which is optimized to mimic 

the model predictions

f(x)



Generalized Additive Models as Global Explanations
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

[Tan et. al., 2019]

Model Agnostic



Generalized Additive Models as Global Explanations: 
Shape Functions for Predicting Bike Demand

133

[Tan et. al., 2019]



Generalized Additive Models as Global Explanations: 
Shape Functions for Predicting Bike Demand

How does bike demand vary as a function of temperature?

134

[Tan et. al., 2019]



Generalized Additive Models as Global Explanations

Generalized Additive Model (GAM) : 

135

[Tan et. al., 2019]

Shape functions of 
individual features 

Higher order 
feature interaction 

terms

Fit this model to the predictions of the black box to obtain the shape functions. 

ŷ     = 



Decision Trees as Global Explanations
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

[ Bastani et. al., 2019 ]

Model Agnostic



Customizable Decision Sets as Global Explanations
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

Model Agnostic

[ Lakkaraju et. al., 2019 ]

https://dl.acm.org/doi/10.1145/3306618.3314229
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Customizable Decision Sets as Global Explanations
Subgroup Descriptor

Decision Logic

[ Lakkaraju et. al., 2019 ]

https://dl.acm.org/doi/10.1145/3306618.3314229
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Customizable Decision Sets as Global Explanations

Explain how the model 
behaves across patient 

subgroups with different 
values of smoking and 

exercise

[ Lakkaraju et. al., 2019 ]

https://dl.acm.org/doi/10.1145/3306618.3314229
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Customizable Decision Sets as Global Explanations:
Desiderata & Optimization Problem

Fidelity
Describe model behavior accurately

Unambiguity
No contradicting explanations

Simplicity
Users should be able to look at the explanation 

and reason about model behavior

Customizability
Users should be able to understand model 

behavior across various subgroups of interest

Fidelity
Minimize number of instances for which 
explanation’s label ≠ model prediction 

Unambiguity
Minimize the number of duplicate rules 

applicable to each instance 

Simplicity
Minimize the number of conditions in rules; 

Constraints on number of rules & subgroups;

Customizability
Outer rules should only comprise of features 

of user interest (candidate set restricted)

[ Lakkaraju et. al., 2019 ]

https://dl.acm.org/doi/10.1145/3306618.3314229


● The complete optimization problem is non-negative, non-normal, 
non-monotone, and submodular with matroid constraints

● Solved using the well-known smooth local search algorithm (Feige 
et. al., 2007) with best known optimality guarantees.

141

Customizable Decision Sets as Global Explanations

[ Lakkaraju et. al., 2019 ]

https://dl.acm.org/doi/10.1145/3306618.3314229


Local Explanations

• Feature Importances

• Rule Based

• Saliency Maps

• Prototypes/Example Based

• Counterfactuals

Approaches for Post hoc Explainability
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Global Explanations

• Collection of Local Explanations

• Representation Based

• Model Distillation

• Summaries of Counterfactuals



Predictive 
   Model

Deny Loan 

Loan Application

Counterfactual Explanations

143

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

f(x)

Applicant

Counterfactual Generation 
Algorithm

Recourse



Predictive 
   Model

Counterfactual Explanations

144

f(x)

Counterfactual Generation 
Algorithm

DENIED 
LOANS

RECOURSES

How do recourses permitted by the model vary 
across various racial & gender subgroups? 

Are there any biases against certain 
demographics?

[ Rawal and Lakkaraju, 2020 ]

Decision Maker
(or) Regulatory Authority

https://arxiv.org/pdf/2009.07165.pdf


Predictive 
   Model

Customizable Global Summaries of Counterfactuals

145

f(x)

Algorithm for generating 
global summaries of 

counterfactuals

DENIED 
LOANS

How do recourses permitted by the model vary 
across various racial & gender subgroups? 

Are there any biases against certain 
demographics?

[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf
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Omg! this model is biased. It requires 
certain demographics to “act upon” lot 

more features than others.

Subgroup Descriptor

Recourse Rules

Customizable Global Summaries of Counterfactuals
[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf
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Customizable Global Summaries of Counterfactuals:
Desiderata & Optimization Problem

Recourse Correctness
Prescribed recourses should obtain desirable outcomes

Recourse Correctness
Minimize number of applicants for whom prescribed recourse 

does not lead to desired outcome 

Recourse Coverage
Minimize number of applicants for whom recourse does not exist 

(i.e., satisfy no rule).  

Minimal Recourse Costs
Minimize total feature costs as well as magnitude of changes 

in feature values 

Interpretability of Summaries
Constraints on # of rules, # of conditions in rules & # of subgroups 

Recourse Coverage
(Almost all) applicants should be provided with recourses

Minimal Recourse Costs
Acting upon a prescribed recourse 

should not be impractical or terribly expensive

Interpretability of Summaries
Summaries should be readily understandable to 

stakeholders (e.g., decision makers/regulatory authorities).

Customizability
Stakeholders should be able to understand model behavior 

across various subgroups of interest

Customizability
Outer rules should only comprise of features of stakeholder interest 

(candidate set restricted)

[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf


● Feature Costs: Each feature is associated with a cost which indicates how 
hard it is change that feature. 

● How to obtain feature costs?
○ Obtain pairwise feature comparison inputs from domain experts

○ Apply Bradley Terry model which connects pairwise feature comparisons to 

individual feature costs and estimate these costs. 

● Magnitude of Changes: are penalized via total log percentile shift 
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Customizable Global Summaries of Counterfactuals: 
Feature Costs & Magnitude of Changes

●

[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf


● Feature Costs: Each feature is associated with a cost which indicates how 
hard it is change that feature. 

● How to obtain feature costs?
○ Obtain pairwise feature comparison inputs from domain experts

○ Apply Bradley Terry model which connects pairwise feature comparisons to 

individual feature costs and estimate these costs. 
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Customizable Global Summaries of Counterfactuals: 
Feature Costs & Magnitude of Changes

● Magnitude of Changes: are penalized via total log percentile shift 

[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf


● The complete optimization problem is non-negative, non-normal, 
non-monotone, and submodular with matroid constraints

● Solved using the well-known smooth local search algorithm (Feige 
et. al., 2007) with best known optimality guarantees.
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Customizable Global Summaries of Counterfactuals
[ Rawal and Lakkaraju, 2020 ]

https://arxiv.org/pdf/2009.07165.pdf
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Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Explanations in Different Modalities

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
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Post hoc Explanations in 
Different Modalities

153



Different Data Modalities
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Natural Language

Computer VisionStructured Data



Different Data Modalities
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Natural Language

Computer Vision

 

Structured Data



Structured Data

156

Categorical Data Ordinal Data
Numerical Data

(Discrete & Continuous)

155.32



Structured Data: Why care about 
explainability?

• Lot of information in various real world settings available as 

structured data 

• Lots of applications deal with structured data
• Disease diagnosis and treatment (e.g., weight, age, symptoms, glucose level)

• Risk prediction in education/lending/criminal justice (e.g., credit scores, previous 
crimes, student GPAs, education level)

• Recommender systems for movies/products (e.g., list of movies liked in the past)

157



Challenges for Structured Data

● Different types of variables in the data

○ Different types of variables call for different similarity/perturbation 
functions

○ gradients may not always be meaningful

● Depending on the task/domain, data could be either low or high 
dimensional

○ E.g., movie recommendations -- user x movie matrix (high dimensional)

●
158



Structured Data: Explainability Techniques

159

● Feature importance based explanations

○ Perturbation methods e.g., LIME/SHAP

○ Saliency maps and other gradient based methods not very meaningful



Feature Importance Based Explanations

160

[ Matthews 2019 ]



Structured Data: Explainability Techniques

161

● Feature importance based explanations

○ Perturbation methods e.g., LIME/SHAP

○ Saliency maps and other gradient based methods not very meaningful

● Prototype/example based explanations 
○ might not always be interpretable 

○ e.g., an instance with 100 feature values as prototype



Prototype Based Explanations

Influential instances driving the prediction: 

162

Instance # Age Weight Smoking Exercise Prediction

1 32 153 No Yes Not Diabetic 

2 27 172 Yes Yes Not Diabetic

3 55 163 No Yes Not Diabetic

4 18 147 No No Not Diabetic

Prediction: Not Diabetic

[ Koh and Liang, 2017 ]

https://arxiv.org/abs/1703.04730


Structured Data: Explainability Techniques

163

● Feature importance based explanations

○ Perturbation methods e.g., LIME/SHAP

○ Saliency maps and other gradient based methods not very meaningful

● Prototype/example based explanations 
○ might not always be interpretable 

○ e.g., an instance with 100 feature values as prototype

● Rule based explanations 



Rule Based Explanations
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[ Letham et. al., 2015;  Lakkaraju et. al. 2016 ]

https://arxiv.org/pdf/1511.01644.pdf
https://dl.acm.org/doi/pdf/10.1145/2939672.2939874


Structured Data: Explainability Techniques

165

● Feature importance based explanations

○ Perturbation methods e.g., LIME/SHAP

○ Saliency maps and other gradient based methods not very meaningful

● Prototype/example based explanations 
○ might not always be interpretable 

○ e.g., an instance with 100 feature values as prototype

● Rule based explanations 

● Counterfactual explanations

●



Counterfactual Explanations
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[ Ustun et. al., 2019; Rawal and Lakkaraju, 2020 ]

https://arxiv.org/abs/1809.06514
https://arxiv.org/pdf/2009.07165.pdf


Different Data Modalities

167

Natural Language

Structured Data

 

Computer Vision



Feature Importance Approaches on VGG-16

168

Input Model Predictions

Junco Bird



Neuron Shapley Importance for Inception-V3 Trained on 
ImageNet

169Images from Ghorbani et. al. at Neurips 2020

Positive Activation Negative Activation

https://arxiv.org/abs/2002.09815.pdf


Saliency Map for Bone Age Model

170

Input Model Predictions

Bone Age



Contextual Decomposition for a Skin Cancer Prediction Model

171Images from Reiger et. al. 2020

https://arxiv.org/abs/1909.13584.pdf


Integrated Gradients for Diabetic Retinopathy Model

172Images from Sayres et. al. 2019

https://pubmed.ncbi.nlm.nih.gov/30553900/


TCAV for Diabetic Retinopathy Model

173Images from Kim et. al. 2018

https://arxiv.org/abs/1711.11279.pdf


Challenges Transfering Approaches to Medical Setting
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Adapting explanation methods developed for benchmark tasks like ImageNet and  
CIFAR to medical imaging setting is  challenging in practice due to input 
homogeneity.

Knee Xray



Different Data Modalities

175

Computer VisionStructured Data

 

Natural Language



Natural Language Processing

• Why should we care about interpretability for NLP?

• Lots of NLP applications everywhere

• Translation, Social Media Analysis, Hate Speech Filtering, Digital Assistants, … 

• Quickly evolving, in major ways, last few years

• Word Embeddings, ELMo, BERT, GPT-2/3, T5, ...

• Gap between what the benchmarks show and how good they are is vast

• Lots of question answering, classification, textual entailment, etc. are “solved”

• Brings up unique and additional challenges (that are more general)

• Domains with discrete/structured/combinatorial inputs...

176



Challenges for NLP

● Discrete space of inputs

○ E.g. gradients are not directly applicable (or as meaningful)

● Not all combinations are well defined

○ They need not to be nonsense, ungrammatical

● Difficult to write a similarity/perturbation functions

● Format is not fixed: not everything is classification

○ structured prediction, text generation, span selection, ...

● Language does not lend itself to “simple explanations”
177



Word Attribution for NLP

178

Sentiment

            QA

         MLM



Perturbation-based Explanations for NLP

179

LIME Anchors

This audio is not bad
This novel is not bad
This footage is not bad

This movie is not bad



Input Reduction
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[ Feng et al. 2018 ]

https://arxiv.org/abs/1804.07781


Input Reduction
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[ Feng et al. 2018 ]

https://arxiv.org/abs/1804.07781


Input Reduction
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[ Feng et al. 2018 ]

https://arxiv.org/abs/1804.07781


Input Reduction
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[ Feng et al. 2018 ]

https://arxiv.org/abs/1804.07781


Prototypes for NLP

184

[ Han et al. 2020 ]

https://arxiv.org/abs/1811.09720
https://arxiv.org/abs/2005.06676


Prototypes for NLP
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[ Han et al. 2020 ]

https://arxiv.org/abs/1811.09720
https://arxiv.org/abs/2005.06676


Prototypes for NLP

186

[ Han et al. 2020 ]

https://arxiv.org/abs/1811.09720
https://arxiv.org/abs/2005.06676


Useful Implementations

Lots of code available (in no particular order):
● https://captum.ai/tutorials/Bert_SQUAD_Interpret

● https://github.com/PAIR-code/lit

● https://allennlp.org/interpret

● https://github.com/QData/TextAttack

● https://github.com/interpretml/interpret-text

● Influence functions for text

● Triggers Code

● Anchors Code

● LIME Code

187compiled with Matt Gardner and Eric Wallace

https://captum.ai/tutorials/Bert_SQUAD_Interpret
https://github.com/PAIR-code/lit
https://allennlp.org/interpret
https://github.com/QData/TextAttack
https://github.com/interpretml/interpret-text
https://github.com/xhan77/influence-function-analysis
https://github.com/Eric-Wallace/universal-triggers
https://github.com/marcotcr/anchor/
https://github.com/marcotcr/lime
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Evaluation of 
Post hoc Explanations

190



How we evaluate explanations?

191

[ Doshi-Velez and Kim, 2017 ]

https://arxiv.org/abs/1702.08608


What are you evaluating?

Two Different Factors

192

How we 
evaluate it?

Application-
grounded

Human-
grounded

Functionally-
grounded

Understand 
the Behavior

Useful for 
Debugging

Help make 
decisions

[ Lage et al, 2019 ]

https://arxiv.org/pdf/1902.00006.pdf


Evaluating Post hoc Explanations
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Understand the Behavior

Useful for Debugging

Help make decisions



Evaluating Post hoc Explanations
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Useful for Debugging

Help make decisions

 

Understand the Behavior



How important are selected features?
• Deletion: remove important features and see what happens..

195

% of Pixels deleted

P
re

di
ct

io
n

 P
ro

ba
bi

lit
y

[ Qi, Khorram, Fuxin, 2020 ]

https://arxiv.org/abs/1905.00954


How important are selected features?
• Deletion: remove important features and see what happens..
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How important are selected features?
• Deletion: remove important features and see what happens..
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How important are selected features?
• Deletion: remove important features and see what happens..
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How important are selected features?
• Deletion: remove important features and see what happens..

199

% of Pixels deleted

P
re

di
ct

io
n

 P
ro

ba
bi

lit
y



How important are selected features?
• Deletion: remove important features and see what happens..
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How important are selected features?
• Insertion: add important features and see what happens..
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How important are selected features?
• Insertion: add important features and see what happens..
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How important are selected features?
• Insertion: add important features and see what happens..
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How important are selected features?
• Insertion: add important features and see what happens..
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How important are selected features?
• Insertion: add important features and see what happens..
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Same Idea: For Training Data

Add/remove influential training data, see what happens

206

[ Ghorbani and Zou 2019 ]

https://arxiv.org/pdf/1904.02868.pdf


Predicting Behavior (“Simulation”)

Classifier

Predictions & 
Explanations

Show to user

Data

Predictions

New 
Data

User guesses what
the classifier would do
on new data

207

[ Ribeiro et al. 2018, Hase and Bansal 2020 ]

Compare Accuracy

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982/15850
https://arxiv.org/abs/2005.01831


Predicting Behavior (“Simulation”)

208

[ Poursabzi-Sangdeh et al. 2018 ]

https://arxiv.org/pdf/1802.07810.pdf


Evaluating Post hoc Explanations
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Help make decisionsUnderstand the Behavior

 

Useful for Debugging



1. Detecting Problems in Classifiers

210

Classifier Explainer
Show 

Explanations

Question 1
Would you trust this model?

Did they say no?

Question 2
What is the classifier doing?

Did they get it right?

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


2. Comparing Classifiers

211

Question
Which algorithm is better?

Classifier

Classifier

Explainer

Show 
Explanations

Explainer

Did they pick the right one?

[ Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


3. “Fixing” Features of Classifiers

212

[ Ribeiro et al. 2016, Lertvittayakumjorn et al. 2020 ]

Explainer

Change
“features”

Compute Accuracy

What looks 
“wrong”?

Show
Explanations

Classifier

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/2010.04987


4. Finding Errors in Training Data

213

[ Koh and Liang et al. 2017, Pezeshkpour et al 2019 ]

Training Data

Re-labels 
high-ranked

instances
ExplainerClassifier

Were the added ones selected?
Does the accuracy go up?

• Prototypical Explanations: important instances from training data

https://arxiv.org/pdf/1703.04730.pdf
https://arxiv.org/abs/1905.00563


Understand the Behavior

Evaluating Posthoc Explanations
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Useful for Debugging

 

Help make decisions



Human-AI Collaboration

• Are Explanations Useful for Making Decisions?
• For tasks where the algorithms are not reliable by themselves

215

[ Lai and Tan, 2019 ]

https://arxiv.org/abs/1811.07901


Human-AI Collaboration

• Deception Detection: Identify fake reviews online
• Are Humans better detectors with explanations?

216

[ Lai and Tan, 2019 ]

https://machineintheloop.com/deception/

https://arxiv.org/abs/1811.07901
https://machineintheloop.com/deception/


Machine Teaching

217

[ Aodha et al, 2018 ]

https://arxiv.org/abs/1802.06924


Machine Teaching

218

[ Aodha et al, 2018 ]

Which Explanations are most useful for learning?

https://arxiv.org/abs/1802.06924


Understand the Behavior

Evaluating Posthoc Explanations

219

Useful for Debugging

Help make decisions



Limitations of Evaluating Explanations

● Evaluation setup is often very easy/simple (or unrealistic)
○ E.g. “bugs” are obvious artifacts, classifiers are different from each other

○ Instances/perturbations create out-of-domain points

● Sometimes flawed
○ E.g. is model explanation same as human explanation?

● Automated metrics can be optimized
● User studies are not consistent

○ Affected by choice of: UI, phrasing, visualization, population, incentives, …
○ ML researchers are not trained for this ☹

● Conclusions are difficult to generalize
220
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Limits of Post hoc 
Explanations
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Limitations
● Faithfulness/Fidelity 

■ Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
■ Post-hoc explanations can be easily manipulated.

● Stability 
■ Slight changes to inputs can cause large changes in explanations. 

● Useful in practice? 
■ Unclear if a data scientist (ML engineer)/end-user can use explanations 

to isolate errors, improve ‘trust’ or simulate the model. 
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Limitations
● Faithfulness/Fidelity 

■ Some explanation methods do not ‘reflect’ the underlying model.
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Do Explanations Capture Model-based Discriminative Signals?
Input Model Predictions

Junco Bird

does the model, indeed,  rely 
on these input dimensions to 
determine the output?
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Faithfulness/Fidelity

Does the output of an explanation method reflect 
the underlying ‘computation or behavior’ of the 
black-box model?
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Sanity Check for Faithfulness/Fidelity
● Sensitivity to Model Parameters: if the parameter settings 

change, the explanations should change.

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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change, the explanations should change.

Parameter Setting 1
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Parameter Setting 2
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Sanity Check for Faithfulness/Fidelity
● Sensitivity to Model Parameters: if the parameter settings 

change, the explanations should change.

Parameter Setting 1

Junco Bird

Parameter Setting 2

Corn

Post-Hoc Explanation 1

Post-Hoc Explanation 2

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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Cascading Randomization Inception-V3
● Randomize (re-initialize) model parameters starting from top 

layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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Cascading Randomization Inception-V3
● Randomize (re-initialize) model parameters starting from top 

layer all the way to the input.

Normal Model 
Explanation

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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● Randomize (re-initialize) model parameters starting from top 
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Randomized
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Cascading Randomization Inception-V3
● Randomize (re-initialize) model parameters starting from top 

layer all the way to the input.

Normal Model 
Explanation

Top Layer 
Randomized

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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Cascading Randomization Inception-V3
● Randomize (re-initialize) model parameters starting from top 

layer all the way to the input.

Normal 
Model 

Explanation

Successive Inception 
Blocks

Guided BackProp Explanation Inception-V3 ImageNet

...

Random
Weights

Guided BackProp is invariant to the higher level weights.

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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‘Modified backprop approaches’ are invariant
Method that compute relevance via modified backpropagation and performance 
positive aggregation along the way are invariant to higher layers.

Sixt et. al. 2020

https://arxiv.org/pdf/1912.09818.pdf
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Source of Invariance
● Guided BackProp and DeConvNet seek to approximately 

reconstruct the input (Nie et. al. 2018).

● These modified backprop methods converge to a rank-1 matrix! 
This is because the product of a sequence of non-negative matrices 
(non-orthogonal columns, along with other assumptions) converges to 
a rank-1 matrix (Theorem 1 in Sixt et. al. 2020).

https://arxiv.org/abs/1805.07039
https://arxiv.org/pdf/1912.09818.pdf
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Source of Invariance
● Guided BackProp and DeConvNet seek to approximately 

reconstruct the input (Nie et. al. 2018).

● These modified backprop methods converge to a rank-1 matrix! 
This is because the product of a sequence of non-negative matrices 
(non-orthogonal columns, along with other assumptions) converges to 
a rank-1 matrix (Theorem 1 in Sixt et. al. 2020).

● DeConvNet
● Guided BackProp
● Guided GradCAM

● Deep Taylor Decomposition
● Pattern Net and Pattern Attribution 

(empirically)
● RectGrad

https://arxiv.org/abs/1805.07039
https://arxiv.org/pdf/1912.09818.pdf
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Cascading Randomization Inception-V3

Gradient

SmoothGrad

Input-Grad

GradCAM

Integrated Gradients

Normal 
Model 

Explanation

Successive Inception 
Blocks Random

Weights

Adebayo et. al. 2018

https://arxiv.org/abs/1810.03292
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Limitations
● Faithfulness/Fidelity 

■ Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
■ Post-hoc explanations can be easily manipulated.
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Post-hoc explanations can be easily manipulated.

Dombrowski et. al. 2019

Post-hoc Explanations are Fragile

https://arxiv.org/abs/1906.07983
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Scaffolding attack used to hide classifier dependence on gender.

Slack and Hilgard et. al. 2020

Scaffolding Attack on LIME & SHAP

https://arxiv.org/abs/1911.02508.pdf
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Adversarial Attack on Explanations

Adversarial Attack of Ghorbani et. al. 2018

Minimally modify the input with a small perturbation without 
changing the model prediction.
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Adversarial Attack on Explanations

Adversarial Attack of Ghorbani et. al. 2018

Minimally modify the input with a small perturbation without 
changing the model prediction.
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Other Attacks
● Shift attack by Kindermans & Hooker et. al. (2017).

● Augmented loss function attack by Dombrowski et. al. (2019).

● Passive and Active fooling loss augmentation attack by Heo et. al. (2019).

https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1906.07983
https://arxiv.org/abs/1902.02041
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Other Attacks

● LIME
● Gradient
● Input-Gradient
● DeConvNet
● Guided BackProp
● GradCAM

● SHAP
● Integrated Gradients
● LRP
● Deep Taylor Decomposition
● Pattern Attribution
● Training Point Ranking

Methods Affected 

● Shift attack by Kindermans & Hooker et. al. (2017).

● Augmented loss function attack by Dombrowski et. al. (2019).

● Passive and Active fooling loss augmentation attack by Heo et. al. (2019).

https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1906.07983
https://arxiv.org/abs/1902.02041
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Defense Against Manipulation
Anders et. al. (2020) propose: 1) Hyperplane method & 2) Autoencoder to 
defend explanations against manipulation.

Credit Scoring Example

Anders et. al., 2020

https://proceedings.icml.cc/static/paper_files/icml/2020/3760-Paper.pdf
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Defense Against Manipulation
Anders et. al. (2020) propose: 1) Hyperplane method & 2) Autoencoder to 
defend explanations against manipulation.

Credit Scoring Example

Anders et. al., 2020

https://proceedings.icml.cc/static/paper_files/icml/2020/3760-Paper.pdf
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Limitations
● Faithfulness/Fidelity 

■ Some explanations do not reflect the underlying model.

● Fragility
■ Post-hoc explanations can be easily manipulated.

● Stability 
■ Slight changes to inputs can cause large changes in explanations. 
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Limitations: Stability
Post-hoc explanations can be unstable to small, non-adversarial, 
perturbations to the input.

Alvarez et. al. 2018.

https://arxiv.org/pdf/1806.08049.pdf


262

Limitations: Stability
Post-hoc explanations can be unstable to small, non-adversarial, 
perturbations to the input.

‘Local Lipschitz Constant’

Input

Explanation function: LIME, SHAP, 
Gradient...etc.

Alvarez et. al. 2018.

https://arxiv.org/pdf/1806.08049.pdf
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Limitations: Stability

● Perturbation approaches like LIME 
can be unstable.

● Yeh et. al. (2019) analytically derive 
bounds on explanations sensitive 
for certain popular methods and 
propose stable variants.

Alvarez et. al. 2018.

Estimate for 100 tests for an MNIST Model.

https://arxiv.org/abs/1901.09392
https://arxiv.org/pdf/1806.08049.pdf
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Sensitivity to Hyperparameters

Bansal, Agarwal, & Nguyen, 2020.

Explanations can be highly 
sensitive to hyperparameters 
such as random seed, number 
of perturbations, patch size, etc. 

http://anhnguyen.me/project/sam/
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Limitations
● Faithfulness/Fidelity 

■ Some explanations do not reflect the underlying model.

● Fragility
■ Post-hoc explanations can be easily manipulated.

● Stability 
■ Slight changes to inputs can cause large changes in explanations. 

● Useful in practice? 
■ Unclear if a data scientist (ML engineer)/lay person use explanations to 

isolate errors, improve ‘trust’, and ‘simulatability’ in practice? 
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Model Debugging: Spurious Signals
True Label: Siberian Husky Model Predictions

Wolf

LIME

Relying on snow background

Riberio et. al. 2017.

https://arxiv.org/pdf/1602.04938.pdf
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Model Debugging: Spurious Signals

Relying on Image Captions to 
find horses.

Lapuschkin et. al. 2020

https://www.nature.com/articles/s41467-019-08987-4
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Explanations as Priors & Model ‘Simulatability’

● Regularizing explanations during training: 
■ reduces reliance on spurious training signals (Ross et. 

al., 2017; Reiger et. al., 2020; & Erion et. al. 2020);
■ improves robustness to adversarial examples (Ross et. 

al., 2018).

https://arxiv.org/abs/1703.03717
https://arxiv.org/abs/1703.03717
https://arxiv.org/abs/1909.13584
https://arxiv.org/abs/1906.10670
https://arxiv.org/abs/1711.09404
https://arxiv.org/abs/1711.09404


269

Explanations as Priors & Model ‘Simulatability’

● Regularizing explanations during training: 
■ reduces reliance on spurious training signals (Ross et. 

al., 2017; Reiger et. al., 2020; & Erion et. al. 2020);
■ improves robustness to adversarial examples (Ross et. 

al., 2018).
● Explanations help improve ability of end-users to simulate 

the model: 
■ tabular LIME improves forward and counterfactual 

simulatability (Hase et. al. 2020);
■ prototype explanation improves counterfactual 

simulatability (Hase et. al. 2020).

https://arxiv.org/abs/1703.03717
https://arxiv.org/abs/1703.03717
https://arxiv.org/abs/1909.13584
https://arxiv.org/abs/1906.10670
https://arxiv.org/abs/1711.09404
https://arxiv.org/abs/1711.09404
https://arxiv.org/abs/2005.01831.pdf
https://arxiv.org/abs/2005.01831.pdf
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Explanations with perfect fidelity can still mislead 

Lakkaraju & Bastani 2019.

In a bail adjudication task, misleading high-fidelity explanations 
improve end-user (domain experts) trust.

True Classifier relies on race

https://arxiv.org/pdf/1911.06473.pdf


271Lakkaraju & Bastani 2019.

True Classifier relies on race High fidelity ‘misleading’ explanation 

In a bail adjudication task, misleading high-fidelity explanations 
improve end-user (domain experts) trust.

Explanations with perfect fidelity can still mislead 

https://arxiv.org/pdf/1911.06473.pdf
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Difficulty using explanations for debugging

Poursabzi-Sangdeh et. al. 2019

In a housing price prediction task, Amazon mechanical turkers are 
unable to use linear model coefficients to diagnose model mistakes.

https://arxiv.org/pdf/1802.07810.pdf


273Adebayo et. al., 2020.

In a dog breeds classification task, users familiar with machine 
learning rely on labels, instead of saliency maps, for diagnosing 
model errors.

Difficulty using explanations for debugging

https://arxiv.org/abs/2011.05429
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In a dog breeds classification task, users familiar with machine 
learning rely on labels, instead of saliency maps, for diagnosing 
model errors.

Difficulty using explanations for debugging

https://arxiv.org/abs/2011.05429


275Borowski & Zimmermann et. al. 2020

Users found natural images more helpful than feature visualization 
in deciding whether in image strongly activated a neuron.

Natural images more helpful than feature visualization

https://arxiv.org/abs/2010.12606.pdf
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Conflicting Evidence on Utility of Explanations

● Mixed evidence:  
● simulation and benchmark studies show that 

explanations are useful for debugging;
● however, recent user studies show limited utility in 

practice.



277

● Mixed evidence:  
● simulation and benchmark studies show that 

explanations are useful for debugging;
● however, recent user studies show limited utility in 

practice.

● Rigorous user studies and pilots with end-users can 
continue to help provide feedback to researchers on what 
to address (see: Alqaraawi et. al. 2020, Bhatt et. al. 2020 & 
Kaur et. al. 2020). 

Conflicting Evidence on Utility of Explanations

https://arxiv.org/abs/2002.00772.pdf
https://dl.acm.org/doi/abs/10.1145/3351095.3375624
https://dl.acm.org/doi/fullHtml/10.1145/3313831.3376219
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Limitations
● Faithfulness/Fidelity 

■ Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
■ Post-hoc explanations can be easily manipulated.

● Stability 
■ Slight changes to inputs can cause large changes in explanations. 

● Useful in practice? 
■ Unclear if a data scientist (ML engineer)/end-user can use explanations 

to isolate errors, improve ‘trust’ or simulate the model. 
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Future of Post hoc 
Explainability

Emerging Topics in Explainability Research
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Post hoc Explanation Methods

Post hoc Explainability 
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Intersections with Differential Privacy

Intersections with FairnessRigorous Evaluation of the Utility of 
Post hoc Explanations

Towards Better Post hoc Explanations Other Emerging Directions



• Modeling uncertainty in post hoc explanations [Guo et. al. 2018, Slack et. al. 2020] 

• Generating post hoc explanations that are stable as well as robust 
to distribution shifts [Chalasani et. al., 2020, Lakkaraju et. al. 2020]

• Generating causal explanations that are faithful to the underlying 
model [Goyal et. al., 2020]

Post hoc explanations have several limitations: 

not faithful to the underlying model, unstable, fragile

Methods for More Reliable Post hoc Explanations

284



Modeling Uncertainty in Post hoc Explanations 

285

[ Guo et. al., 2018, Slack et. al., 2020 ]

Bayesian versions of LIME/SHAP 
with closed form solutions

Model Agnostic

I need an explanation where true 
feature importance lies within ±0.5 
of estimated values with 95% 
confidence

Generate post hoc explanations with 
user specified confidence levels

https://arxiv.org/abs/1811.03422
https://arxiv.org/abs/2008.05030


Stable and Robust Post hoc Explanations

● Leverages minimax objective and adversarial 

training to generate explanations that are stable

and robust to distribution shifts

● Generic framework -- can be instantiated

         to generate model agnostic local/global explanations

         of various types (e.g., feature importances, rules)
286

[ Lakkaraju et. al., 2020 ]

worst-case over 
distribution shifts

mismatch between explanation 
and black box  predictions

https://proceedings.icml.cc/static/paper_files/icml/2020/5945-Paper.pdf


Faithful Causal Explanations

● Causal Concept Effect: Estimate the causal effect of (the presence or absence 
of) a human-interpretable concept on a deep neural net’s predictions

● Estimating such effects is hard when we can’t easily turn on/off a given 
concept in a data point (e.g., editing out eyeglasses from images)

● Leverage variational autoencoders to mitigate this problem and measure 
causal effects

287

[ Goyal et. al., 2020 ]

Identifying vulnerabilities in existing post hoc explanation 
methods and proposing approaches to address these 

vulnerabilities is a critical research direction going forward!

https://arxiv.org/pdf/1907.07165.pdf
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Theoretical Analysis of Post hoc Explanation Methods

• Theoretical analysis of LIME

• “black box” is a linear model 

• data is tabular and discretized

• Obtained closed-form solutions of the average coefficients of the “surrogate” model 
(explanation output by LIME)

• The coefficients obtained are proportional to the gradient of the function to be 
explained

• Local error of surrogate model is bounded away from zero with high probability
289

[Garreau et. al., 2020]

Theoretical analysis shedding light on the fidelity, stability, 
and fragility of post hoc explanation methods can be 

extremely valuable to the progress of the field!
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Rigorous Evaluation of the Utility of Post hoc Explanations

• Domain experts and end users seem to be over trusting 
explanations & the underlying models based on explanations

• Law school students trusted underlying model 9.8 times more when 
shown a misleading explanation which “white-washes” the model

 
• Data scientists over trusted explanations without even comprehending 

them -- “Participants trusted the tools because of their visualizations and 
their public availability”

291

[Kaur et. al., 2020; Lakkaraju et. al., 2020]
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Responses from Data Scientists Using Explainability Tools
 (GAM and SHAP)

[Kaur et. al., 2020]



Are Explanations Helping Humans in Real World Tasks?

293

[Bansal and Wu et. al., 2020]

• Evaluating the effect of explanations on human-AI collaboration
• Sentiment analysis and question answering tasks

• Showing state-of-the-art explanations (e.g., LIME) made little to no 
difference (and sometimes hurt!)

Rigorous user studies and evaluations to ascertain the utility 
of different post hoc explanation methods in various contexts 

is extremely critical for the progress of the field! 
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Beyond Classification: Explainability for RL 

● Model distillation using soft decision trees

to understand RL policies
○ Map states to actions

● Summarize agent behavior by identifying

important states in a policy

● A state is important if different actions 

          lead to substantially different outcomes

295

[Coppens et. al., 2019, Amir et. al. 2018]



● Causal explanations of the behavior of model free RL agents

● Generate explanations of agent behaviour based on 
counterfactual analysis of the causal model

296

Beyond Classification: Explainability for RL 

Explaining the actions of a StarCraft II agent

[Madumal et. al., 2019]



Beyond Classification: Explainability for GNNs

Takes a trained GNN and its predictions and returns an explanation 
in the form of a small subgraph + a small subset of node features 
that are influential to a given prediction

297

[Ying et. al., 2019]

Lots of real world applications call for models/algorithms 
that go beyond classification. Exciting opportunities to 

explore explainability in these settings!
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Intersections with Differential Privacy

● Explanations could potentially expose sensitive information 
from the datasets

● Explanations of complex black box models which are not only

      interpretable but also differentially private

● Use locally linear models + perturb the gradients when 
learning them

299

[Harder et. al., 2020; Patel et. al. 2020]

Need for more theoretical, methodological, and empirical 
research exploring this intersection!
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Intersections with Fairness

Distill and Compare: Compare the transparent/distilled down 
versions of risk scoring model and true outcome model to detect 
biases in risk scoring models.

301

[Tan et. al., 2018]



Intersections with Fairness

● It is commonly hypothesized that post hoc explanations can help 
with detecting model biases. 
○ Need for more rigorous theoretical and empirical studies to 

quantitatively evaluate this hypothesis

● Can post hoc explanations help detect unfairness?
○ How do they complement existing statistical notions of unfairness?

302

[Ustun et. al. 2019, Gupta et. al. 2019]



Intersections with Fairness

Fairness Shapley Values: Attribute unfairness in model predictions 
to individual features using Shapley values framework

For different definitions of fairness,

it is possible to choose Shapley value

functions which ‘explain’ the unfairness

303

[Begley et. al., 2020]

The connections between explainability and fairness need to 
be explored more thoroughly both through rigorous analysis 

and user studies.
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In Conclusion
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Parting Thoughts… 

When introducing a new explanation method: 

● Who are the target end users that the method will help?

● A clear statement about what capability and/or insight the method aims to provide to its 
end users 

● Careful analysis and exposition of the limitations and vulnerabilities of the proposed 
method

● Rigorous user studies (preferably with actual end users) to evaluate if the method is 
achieving the desired effect 

● Use quantitative metrics (and not anecdotal evidence) to make claims about explainability 307

[Leavitt and Morcos, 2020; Roth and Kearns, 2019]
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